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Abstract—We propose a method to adaptively denoise sensor
data streams corrupted by noise that can be approximated as
additive white Gaussian. This on-line filtering method is based
on the Monte-Carlo Stein’s Unbiased Risk Estimate (MC-SURE)
algorithm, which enables a blind optimization of the denoising
parameters for a wide class of filters. We first identify the
challenges that arise as the MC-SURE algorithm is adapted to
on-line data processing. We then propose a framework to address
these challenges and demonstrate the application of the algorithm
using real-world datasets.

I. I NTRODUCTION

The increasing affordability of sensors is enabling cost-
effective and real (or near-real) time monitoring of complex
phenomena and systems such as fusion in tokamak reactors,
electric power grids, or large-scale infrastructure networks.
The measurements obtained from multiple sensors monitoring
the phenomena or systems under consideration are analyzed
to track their operating state or detect deviations from normal
behavior. However, the effectiveness of these analysis algo-
rithms depends on the quality of the input data, that is, their
signal-to-noise power ratio. Since sensor data are typically
subject to non-negligible measurement errors due to noise,
the data recorded must be filtered to remove most of the
noise while preserving the important waveform information.
Though there exist a host of denoising algorithms, most are not
inherently designed for real (or near-real) time data processing
as they often lack an automated mechanism for selecting the
best parameter values for denoising arbitrary measurement
sequences using the prescribed filter.

We develop a simple and practical method for on-line
denoising of sensor data streams with arbitrary waveform
characteristics by using the Monte-CarloStein’s Unbiased Risk
Estimate (MC-SURE) algorithm [1]. This approach enables a
blind optimization of the regularization parameters of a wide
class of filters that seek to recover an arbitrary signal corrupted
by additive white Gaussian noise (AWGN). The MC-SURE
formulation is particularly suited for streaming data since it
produces the optimal denoising parameter (defined using the
mean-squared-error) for a chosen filter without any assumption
about the underlying noise-free signal.

In this paper, we describe a strategy for adapting the MC-
SURE algorithm to streaming data. First, in Section II, we
describe the algorithm and discuss issues associated with its
on-line implementation. Section III describes how we address

these challenges. Results and discussions are given in Section
IV and concluding remarks in Section V.

II. CONCEPTS ANDCHALLENGES

The MC-SURE algorithm optimizes the (vector)-parameter
λ of a continuous and (weakly) differentiable denoising func-
tion fλ(·). Consider the noisy data

y = s + w (1)

comprised of a desired signals ∈ R
N andw ∈ R

N , a zero-
mean AWGN with varianceσ2. The mapping

ŝλ = fλ(y) (2)

is the λ-parametrized data filtering operation that produces
a signal estimate ofs. The MC-SURE procedure finds the
optimal parameter for denoisingy by minimizing a proxy of
the mean-squared-error (MSE) criterion, namely, theStein’s
Unbiased Risk Estimate (SURE) [2]. This SURE-statistic
estimating the MSE is expressible [1] as

Tλ(y) =
1

N
‖y − ŝλ‖

2 +
2σ2

N
divy{fλ(y)} − σ2 (3)

where divy{fλ(y)} denotes the divergence of the denoising
function with respect to the data. The MSE-based optimal de-
noising parameterλ∗ is thus the minimizer of the SURE-curve
{Tλ(y) : λ ∈ R

K}. Fig. 1 illustrates the automated denoising
of a data segment by a Gaussian filter whose parameter is
identified using the SURE curve, which, as shown, closely
approximates the MSE curve. For filters which do not have
a closed-form expression for the divergence term in Equation
3, we can use a Monte-Carlo approach to estimate this term
[1], thus providing us additional options in the selection of a
noise-removal filter.

The MC-SURE procedure is particularly well-suited to on-
line data denoising as it produces thebest filter parameter
without any assumption about the underlying signal. However,
the application of the algorithm to streaming data presents
some practical challenges. If we use a block-based approach,
the need to minimize latency dictates that data blocks being
processed must each have a limited number of observations.
This introduces some performance issues as discussed in the
following:

Noise estimation errors:The SURE-statistic formula from
Equation 3 assumes the noise varianceσ is known exactly.



(a) The SURE-curve approximates the MSE-curve and
is thus used as a proxy for finding the parameterλ∗

that minimizes the MSE.

(b) The data and the estimated signal obtained by
filtering the data with the Gaussian filter with parameter
λ = λ∗.

Fig. 1: Illustration of the MC-SURE procedure.

However, it has to be estimated in practice. In [1], Ramani
et al. replaceσ by its estimate computed using the Donoho
median estimator method [3]. This approximates the noise
standard deviation of a length-N datasety by σ̂ = My/0.6745
whereMy is the median of theN/2 wavelet coefficients at
the finest scale. As the analysis in [1] was done on images
with synthetically added AWGN, it is reasonable to substitute
σ by σ̂ because the noise is exactly white Gaussian and the
numberN of observations is very large (N≥ 2562) However,
in streaming/online data processing settings, the size of adata
block will be relatively small. As a result, errors in estimating
the noise term could be significant, leading to unreliable
SURE-curves. For example, the length-N segments in Fig.
2 are from the same periodic signal and thus have the same
frequency content in principle. WhenN is equal to 25, more
substantial discrepancies are observed between SURE-curves
as compared to the case whereN equal 300. This can be
attributed to the increased variance in estimating the noise as
N gets smaller.

Errors in divergence-term computation: Given a length-
N data segmenty and a set of candidate denoising parameter
values{λj : j = 1, 2, . . . , J}, the reliability of the computed
SURE-statisticsTλj

(y) also depends on the accuracy of the
computed divergence term divy{fλj

(y)}. The divergence can
be expressed as

divy{fλj
(y)} = lim

ǫ→0
Eb{b

T (fλj
(y + b) − fλj

(y))}, (4)

whereb is a zero-mean i.i.d. random vector with covariance
ǫ2I, andEb{·} denotes expectation with respect tob. When a
proper value ofǫ is chosen, divy{fλj

(y)} is estimated using

Fig. 2: SURE-curves for two groups of data segments: 20
length-25 data segments and 20 length-300 data segments

a Monte-Carlo (MC) approach: first, generatek realizations
{bi}

k
i=1 of a length-N random vectorb and then compute

the k-MC-run divergence estimate

d̂iv
(k)

y {fλj
(y)} =

1

ǫk

k∑

i=1

bT
i (fλj

(y + bi) − fλj
(y)), (5)

which amounts to averagingk single-MC-run divergence es-
timates. If N is large, a single MC-run suffices to generate
a reliable estimate of divergence. However, as shown in Fig.
3, the estimation error increases rapidly with decreasingN .
Thus, whenN is relatively small, as would be the case in
online block-based data processing, the estimates from a single
run are unreliable as shown in Fig. 4. In such situations, an
appropriate number,k, of MC-runs must be found on-the-fly
to reliably compute the divergence-term for each data segment.

Fig. 3: Variance of the error in estimating the divergence-curve
for different values of the data sizeN .

Fig. 4: Comparison of the divergence-curve with single-MC-
run estimate when the data size is relatively low:N = 300
samples.



Detrimental effects of strong DC components:In addition
to the effect of the small length of a data segment on the
calculation of the noise and divergence estimates, our numeri-
cal experiments suggested that the MC-SURE procedure fails
to return an appropriate denoising parameter for data with a
strong DC-component. This issue is independent of the length
of the data block under consideration. Fig. 5 illustrates the
point. The data segmentsz and zD are identical except for
the presence of a strong DC-component:zD = D + z, where
D is a constant vector. The application of the MC-SURE
algorithm to z produces the SURE-curve in Fig. 5a, which
reports the optimal filter parameter value ofλ∗ = 2. We expect
that a similar denoising parameter value should be necessary
for zD, but the corresponding SURE-curve, shown in Fig. 5b,
erroneously reports that no denoising is needed (λ∗ = 0). In
general, when the data under consideration have a very strong
DC component, the MC-SURE algorithm appears to always
report that no denoising is needed, regardless of the amount
of noise present.

(a) SURE-curve ofz

(b) SURE-curve ofzD (z plus DC-component)

Fig. 5: Comparison of the SURE-curves generated using the
datasetsz and zD. Although the two SURE-curves differ
significantly,z andzD only differ by a DC-component term.

III. A PRACTICAL STRATEGY FORDENOISING SENSOR

DATA STREAMS

Consider a sensor data streamy = {yn : n = 0, 1, . . . }
comprised of a desired signals = {sn : n = 0, 1, . . . } plus
AWGN. The model assumes that the noise parameter varies
as time elapses, albeit very slowly. Samples fromy are taken
in as successive data blocks of sizes which are appropriately
chosen. Thei-th data block is denoted byyi = {yn : Ni ≤
n < Mi}, whereNi+1 = Mi−L andL is the overlap between
consecutive data blocks. The stream of data blocks{yi : i =

 Past observed data blocks 

sub−signal
Current

Current data block 

Previous signal estimate

Current signal estimate 

MC−SURE Denoising

Merging using weighting windows

Input stream

Output stream

Fig. 6: Schematic representation of the block-based, on-line,
data de-noising framework using the MC-SURE algorithm.

0, 1, . . . } is denoised one at a time. The noise in thei-th data
block yi is filtered out using the prescribed filterfλ(·) with
parameterλ set to λ∗

j , the best MC-SURE-based parameter
value. Thei-th data block output,̂si = fλ∗

j
(yi), is the sub-

signal of s contained inyi. The estimate of the portion ofs
that is available after processing the (I+1)-th data blockyI+1

is denoted bŷs(I+1). This current signal estimatês(I+1) is
formed by stitching together the available sub-signal estimates:
{ŝ0, ŝ1, ŝ2, . . . , ŝI+1}. This is done recursively via

s(I+1) = s(I) ⊙ W(I) + ŝI+1 ⊙ WI+1, (6)

wheres(I+1) is new signal-estimate constructed by properly
merging via tapered windows the newly obtained sub-signal
estimate ŝI+1 with the previous signal-estimates(I). The
operator⊙ denotes element-by-element multiplication. The
termsW(I) andWI+1 denote here one-sided cosine tapering
windows although other types of tapering windows are also an
option. The recursive procedure is initialized withs(0) = ŝ0.
This data processing strategy is illustrated in Fig. 6. For this
system to be effective in denoising streaming data, individual
data blocks must be properly denoised using the MC-SURE
in spite of their relatively short lengths or the presence ofDC
terms. We address the issues identified in Section II as follows:

Removal of DC components:To suppress the detrimental
effects of DC components on the performance of the MC-
SURE algorithm, we first pass each data blockyi through a
notch-filter centered at the DC-frequency. A data block without
a DC-component will be indifferent to this pre-filtering. For
simplicity, we may assume hereon that each data block is free
of a DC-component as it would have been removed at this
stage, if present.

Noise estimation: We previously noted that estimating
the noise termσ using only the limited number of samples
from a data blockyi produces an inaccurate estimate which
deteriorates the accuracy of the computed SURE-curve. We
mitigate the problem by combining observations from a chosen
number of consecutive data blocks to generate a better estimate
of σ. Since noise characteristics are expected to change slowly
with time, it is reasonable to assume that the noise observations



from M consecutive data blocks come from i.i.d. Gaussian
distributions with parameterσ. The Donoho median estimator
produces a separate estimate ofσ from each of theM
previous data blocks. When processing the current data block
yI , the noise estimates from theM previous data blocks
{σ̂I−M+1, σ̂I−M+2, . . . , σ̂I} are combined to produce a more
reliable estimate ofσ via

σ̄I =

∑
I−M+1
i=I

Niσ̂i∑
I−M+1
i=I

Ni

(7)

where Ni denotes the length of thei-th data block. The
weighted averaging takes into consideration the unequal re-
liabilities of individual noise estimates and gives more weight
to those from longer data blocks as they are expected to be
more reliable.

Divergence-curve computation:For the grid of parameter-
values{λj : j = 1, 2, . . . , J}, the divergence-curve estimated
via Equation 5 usingk MC runs is denoted by

d
(k)
j = d̂iv

(k)

yI
{fλj

(yI)}, j = 1, 2, . . . , J (8)

For a fixedj, {d(k)
j : k = 1, 2, . . . } is a converging sequence

of estimates of divy{fλj
}. Thej-th element of the divergence-

curve is thus estimated byd(Kj)
j with the number of MC-runs

Kj chosen such that

r
(Kj)
j =

|d
(Kj+1)
j − d

(Kj)
j |

|d
(2)
j − d

(1)
j |

< δ, (9)

where δ is the convergence stopping criterion. SeekingKj

for each of theJ divergence-values may be impractical: The
convergence rate of{r(k)

j : k = 1, 2, . . . } differs from one
j-index to another. Thus, instances might occur where, for
one or a fewj-indexes, an unreasonably large number of
runs is needed to satisfy Equation 9. A group convergence
requirement is then used to avoid such situations: for all
parameter valuesλj , the divergence-value is estimated byd

(K)
j

with the number of MC-runs chosenK such that

r(K) =
1

J

J∑

j=1

r
(K)
j < δ. (10)

The k-indexed sequencer(k) goes from one to zero as the
divergence-curve estimate{d(k)

j : j = 1, 2, . . . , J} converges
with additional MC runs. Fig. 7 shows an example profile for
r(k), where the choice ofδ = 0.02 leads to the termination of
the divergence-curve estimation afterK = 67 MC simulations.

Online selection of data block size:To avoid potential
spatial aliasing issues in the processing of the streaming
data segments, we select the sizes of data blocks based
on waveform structure information computed from the data.
We use techniques from scale-space theory [7] to identify
the typical length (e.g., scale) of the most salient signal
structures in a dataset. By choosing the size of the next
block sufficiently larger than the data scale, we ensure that
enough samples are taken to avoid potential spatial aliasing
issues. Since processing latency has to remain minimal, the

Fig. 7: Illustration of the profile of the sequencer(k),q which is
used to track the convergence of the divergence-curve estimate.

sizes of windows must be bounded above. At theI-th data
block, the computed data scales for the lastP data blocks are
{∆I−P+1,∆I−P+2, . . . ,∆I}. The sizeNI+1 of the (I+1)-th
data block is determined via

NI+1 = min
{
Nmax, θ · max

{
{∆i}

I

i=I−P+1

}}
(11)

where θ is a multiplicative factor andNmax is the maximal
data block size.

IV. RESULTS AND DISCUSSIONS

We tested the denoising strategy using both synthetic and
real datasets. Sample results and implementation steps are
illustrated here with a real-world dataset: a sequence of vehicle
body acceleration response measurements. Table I gives the
parameter values used in the implementation. We observed
(as noted in [1]) that MC-SURE is very robust to variations
in the value ofǫ, which can change from1 to 10−12 without
discernible changes in performance. Since no previous dataare
available to systematically decide the initial data block size,
it is chosen equal to 2Nmax. The sizes of subsequent blocks
are computed via Equation 11 using the largest of the scales
of the two blocks preceding them (i.e.,P = 2).

TABLE I: Values used for the algorithm parameters.

Parameter Chosen value
Standard deviation of probing noise:ǫ 0.0002
Maximum allowed segment size:Nmax 500

Fixed overlap between segments:L 30
Multiplicative factor:θ 24

NumberP of past blocks 2
NumberM of past blocks 5

Table II gives the noise statistics and denoising parameters
computed for 20 consecutive data blocks. The parameterσ̄i,
used as noise term for thei-th data block, is the weighted av-
erage of the individual block noise estimates from the previous
five data blocks (i.e.,M = 5). The denoising parameterλ∗

i is
the standard deviation of the Gaussian filter as determined by
the MC-SURE algorithm. Sample results from our denoising
strategy are shown in Fig. 8. These results support the premise
that it is possible to automatically select the parameters for a
denoising algorithm to process streaming data.



TABLE II: Computed statistics/parameters for 20 segments.

Data block Scale Length σ̂i σ̄i λ∗

i

1 12 1000 0.0396 0.0396 3.75
2 12 244 0.0553 0.0427 4.25
3 15 244 0.0480 0.0435 7.0
4 19 360 0.0357 0.0420 5.0
5 13 456 0.0398 0.0416 3.25
6 13 456 0.0464 0.0440 4.25
7 11 312 0.0405 0.0419 3.25
8 15 312 0.0527 0.0429 3.25
9 12 360 0.0476 0.0451 3.75
10 13 360 0.0381 0.0451 3.25
11 31 312 0.0323 0.0423 3.75
12 13 500 0.0368 0.0411 2.75
13 14 500 0.0322 0.0372 3.0
14 13 336 0.0382 0.0355 3.5
15 13 336 0.0393 0.0357 3.5
16 15 312 0.0381 0.0366 1.0
17 13 360 0.0486 0.0388 0.75
18 11 360 0.0590 0.0450 0.5
19 12 312 0.0554 0.0483 3.75
20 14 288 0.0650 0.0533 0.5

V. CONCLUSION

We proposed a practical strategy to automatically denoise
streaming data that have been corrupted by (approximately)
Gaussian noise. First, we recognized that the MC-SURE
algorithm is well-suited to denoise sensor data streams since
it prescribes a procedure for optimizing the regularization
parameters of a wide class of denoising filters without any
assumption about the underlying signal of interest. Second,
we identified and addressed the challenges in extending the
MC-SURE algorithm to streaming data. Results from our
tests on real datasets that reasonably fit the data model show
good denoising performance. Future research directions would
include a comparison of our approach with other methods for
denoising continuous data, such as wavelets [8], as well as a
sample-based approach to further reduce the latency.
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